rootfs remount on kppless is going to be even harder than | thought :\

so some info for now

LightweightVolumeManager has it's internal array of "partitions”

actually pointers to partitions

it's located at offset Ox1A0

on offset Ox198 there's size of that array

and at index O is root partition obviously

and whatever partition is, it has some flag (let's call it isWriteProtected) at offset 0x28
if that flag is set, mapping would fail

so, we need to somehow locate LightweightVolumeManager instance

thendo (uint8_tx) (uint8_t* LightweightVolumeManagerInst) [0x1A0] [0x28] = 0
to unset that flag

however, there's another check which has to be bypassed

stek29

long story short -- to bypass that check you either have to make PE_i_can_has_kernel_configuration
return 1, which is impossible under kpp/ktrr

or you have to add either rd=md? or rootdev=md? to bootargs

where ? can be any char

you have to add that to in-kernel bootargs, not to pass them from iboot | mean
upd: Partition is LwVMPartition object

for example

let's first leak LightweightVolumeManager

LLJ+ SULOppeaLsiuisipP) L /MEMCTL
Naomis-iPhone:/fox root# ./explorer -K Oxfffffffo0d7b2050 -s LightweightVolumeManager
port : Oxe@3

inkern: Oxfffffff110d3abfs

kobj : Oxfffffff10e767000

vtable: exfffffffoodi2e510

port : @xde7

inkern: Oxfffffff110bbo6f8

kobj : exfffffff110f93000

vtable: Oxfffffffeedi1f8ae

Manmic—iDhnna: /fav _vranti

here we can see that LightweightVolumeManager is at Oxfffffff10e767000
reading at that address gives us pointer to vtable

memctl> r Oxfffffff10e767000
fffffff10e767000: fffffff00d120510

mamec+1 S

and as you can see vtable matches

~/Projects/memctl/bin master
i> ~/Projects/iometa/iometa -v ~/workdir/kc/iphonesel@|grep Lightweight
}vtab=0xfffffff006¥2@510 LightweightVolumeManager

F.

so we know that it's actually LightweightVolumeManager instance
now the next step -- let's look into partitions

readmg at offset 0x198 gives 3 -- as expected -- there are 3 partitions (root, var, baseband)

B e R et e P e e S e W T e T Rl Rl Rt Wl Rl R e R e R e el

memct1> r Oxfffffff10e767198
fffffff10e767198: 0000000000000003

mamec+lN »v NAvFFEFFEFLEFLFFEFI1NATAETANN
so now let's read some partition and check it's vtable

:memctl> r OxfFfffff10e7671a8
fffffff10e7671a8: fffffff10e1b9bdo
memctl> r Oxfffffff10e1b9bdo
Fffffff10e1b9bdo: fFfffffood120dao

l mamer+1 S .

vtab=0xfffffff006f20c88 LwVMPartialIOPo
vtab=Oxfffffffoe6f20da® LwVMPartition

as we can see that's clearly LwVM Partition
now let's go further and check if isWriteProtected flag on all of them

memctl> r Oxfffffff10e7671a0
fffffffl10e7671a0: fffffff10el1b8870
memct1> r Oxfffffff10e1b8898
fffffff10e1b8898 0000000000000001
memct1> r Oxfffffff10e7671a8
fffffffl10e7671a8: fffffff10elb9bdoO
“memctl> r Oxfffffff10elb9bf8
fffffff10e1b9bf8: 0000000
memctl> r Oxfffffff10e7671b0
fffffff10e7671b0: fffffff10el1b8500
memctl> r Oxfffffff10e1b8528
fffffff10elb8528: 0000000000000000

as expected -- root has that flag set, and data/baseband don't
so to pass that check:

io_service_t service =
I0ServiceGetMatchingService(kIOMasterPortDefault,
I0ServiceMatching("LightweightVolumeManager"));

uint64_t inkernel = find_port_address(service);

uint64_t 1wvm_kaddr = rk64(inkernel + OFF_IPC_PORT__IP_KOBJECT);
uint64_t rootp_kaddr = rk64(1lwvm_kaddr + OFF_LWVM__PARTITIONS);
uint64_t rootp_iswp_addr = rootp_kaddr + OFF_LWVMPART_ISWP;

// rk64(rootp_iswp_addr) should be 1

wk64(rootp_iswp_addr, 0);

where OFF_LWVM__PARTITIONS is Ox1a0, OFF_LWVMPART_ISWP is 0x28

now to boot args

so, bootargs in kernel are accessed/stored/etc like this
there's PE_state structure

here's it's definition (form pexpert/pexpert/pexpert.h)

typedef struct PE_state {

boolean_t initialized;
PE_Video video;

void xdeviceTreeHead;
void *bootArgs;

} PE_state_t;

there's one global variable with type PE_state_t

bootArgs points to struct boot_args which is platform dependent

on armé64 (pexpert/pexpert/armé4/boot.h):

typedef struct boot_args {

uintle_t Revision; /* Revision of boot_args
structure x/

uintl6é_t Version; /* Version of boot_args
structure *x/

uint64_t virtBase; /* Virtual base of memory */

uint64_t physBase; /* Physical base of memory x/

uint64_t memSize; /* Size of memory x/

uint64_t topOfKernelData; /* Highest physical address
used in kernel data area */

Boot_Video Video; /x Video Information x/

uint32_t machineType; /* Machine Type */

void xdeviceTreeP; /* Base of flattened device
tree x/

uint32_t deviceTreelLength; /* Length of flattened tree x/

char CommandLine [BOOT_LINE_LENGTH]; /* Passed in

command line x/

uint64_t bootFlags; /* Additional flags specified by

the bootloader x/
uint64_t memSizeActual;
} boot_args;

/* Actual size of memory */

notice char CommandLine [BOOT_LINE_LENGTH];
now, when some code wants to parse some boot arg, it calls PE_parse_boot_argn function

PE_parse_boot_argn_internal performs parsing
to get boot args string it does args = PE_boot_args();
PE_boot_args is once again platform specific, on armé4:

now knowing that, let's look into PE_parse_boot_argn_internal disassembly

boot_argn_internal

» [SP,#ex
s [sP,

%26, qword_FFFFFFF@0786F138
W19, [X26,# !

X26, qword_FFFFFFF@@78BF138
W19, [X26,#08x6C]!
loc FEFFFFF@@77F35DC

if we go to that addr and scroll Oxa0 up...

if we go to that addr and scroll Oxa0 up...

EXPORT _PE_state
_PE_state X4

n:FFFFFFFO@7i
ALIGN @x20
qword_FFFFFFF@@78BF0ARD X 8
qword_FFFFFFF@@78BFOAS % 8
qword_FFFFFFFO@78BFOB0 % 8

qword_FFFFFFFo@

sy A
so, _PE_state.bootArgs is at offset Oxa0, but it's easier to find it directly
and boot_args.CommandLine is at offset Ox6c
let me show those in kernel | currently have on device
here IDA even got the right base and offset :)

» o

NOP
X26, [X8,#(qword_FFFFFFFO@75B15A8 - @xFFFFFFF@@75B81508)]

W21, [X26,#0x6C]!
W2, #1

so now let's read them in booted kernel

memctl> r OxfffffffoOd7b15a8
fffffff@gd7b15a8: fffffffo0e@84000

so, PE_state.bootArgs points to Oxfffffff00e084000
let's dump it

Naomis-iPhone:/fox root# ./ios-kern-utils/kmem Oxfffffff00e084000 0x100
[*] Reading 256 bytes from Oxfffffff00e084000

02 00 02 00 OO OO OO OO OO 00 00 OC FO FF FF FF |eveiiiniinnnnnns |

00 00 0O OO O8 OO0 OO OO OO 0O 98 7D 00 60 A0 00 |...vvvuun.. ool

00 80 OB 02 08 OO OO OO OO OO 60 7E 08 00 00 00 |.....vvn.. R |

01 00 OO OO OO OO OO OO OO OA 00 00 00 00 00 00 . vereennnns |

80 02 OO OO OO OO OO OO 70 04 0O 00 00 00 00 00 |........ Pissinass |

20 00 01 00 00 OO OO0 OO OO 00 00 00 00 00 00 00 | .ovviviivnnnnns |

00 80 08 OE FO FF FF FF 5C E7 £2 00 20 €0 00 00 |........ N |
00 0O 00 00 00 GO G0 GO 0O 0O 00 00 00 00 00 00 |...c.vvvivenannnn I
00 0O 00 00 00 GO G0 GO 0O 0O 00 00 00 60 00 00 |...civvvrvinennnn |
00 0O 00 00 00 GO G0 G0 0O 00 00 00 00 00 00 00 |...cvvivivinennns |
00 0O 00 0O 00 GO G0 GO 0O 0O 00 00 00 00 00 00 |...c.vvvirenennnn |
00 00 00 00 00 GO G0 GO 0O 0O 00 00 00 60 00 00 |..civivivenennns |
00 0O 00 00 00 GO G0 GO 0O 00 00 00 00 00 00 00 |...c.vveirennnnnns I
00 PO 00 0O 00 GO G0 GO 0O 00 00 00 00 00 00 00 |...civvvirenennns I
00 00 0O 00 0O GO0 GO GO0 00 00 00 00 00 00 00 00 |......cocvvvununn |

AN AN AN AN NN NN nn_nn AN AN AN NN NN NN nn__nn 1 1

offset Ox6¢ underlined
so from what we see boot args should be just space

let's check that via sysctl
however, we can't really see space in terminal, so let's replace spaces with underscores too notice it

Naomis-iPhoHe:/fox root# sysctl kern.bootargs | sed 's/ /_/g'
kern.bootargs:__

Rlas ot o 2o o oo L P o +u N

confirmed, bootargs is indeed just " "
now as another test, let's try to write to those bootargs

memctl> ws Oxfffffff00e08406c helloworld
memctl>

[1]+ Stopped(SIGTSTP) ./memctl
Naomis-iPhone:/fox root# sysctl kern.bootargs
kern.bootargs: helloworld_

